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Application of the multisegment numerical integration technique is extended to the free-vibration analysis of

macroscopically anisotropic filament-wound branched shells of revolution with ring stiffeners, considering the

variation of the thickness and winding angle. The solution procedure is based on amodified-frequency trial method,

which processes on the numerically integrated transformed fundamental shell equations that are obtained in terms of

finite exponential Fourier transform of the fundamental shell variables. The full macroscopically anisotropic form of

the constitutive relations, including first-order transverse shear deformation and all components of translatory and

rotary inertia, are included in the analysis. To handle branched shells of revolution, modifications that are necessary

to incorporate junctions are added to the solution procedure. Inclusion of asymmetric circumferential stiffeners,with

respect to themiddle surface of the shell, into the semi-analytical solutionmethod is demonstrated by presenting two

alternative methods of analysis. The present solution methodology also incorporates the variation of the thickness

and winding angle along the meridian of filament-wound shells of revolution, with general meridional curvature, by

assuming placement of filaments along the geodesic fiber path on the surface of the shell of revolution.

Nomenclature

Aij = extensional stiffness coefficients (i; j� 1, 2, 6)
Asij = transverse shear stiffness coefficients (i; j� 4, 5)
Bij = bending-stretching coupling stiffness coefficients

(i, j� 1, 2, 6)
Dij = bending stiffness coefficients (i; j� 1, 2, 6)
E1 = Young’s modulus in the fiber direction
E2 = Young’s modulus transverse to fiber
G12 = in-plane shear modulus
G23, G13 = transverse shear moduli
h = thickness of the shell wall
hR = offset between the reference surfaces of the shell

walls with and without stiffener
M��,M��,
M��

= moment resultants of in-plane normal and shear
stresses (per unit length)

N��, N��,
N��

= in-plane normal and shear stress resultants (per
unit length)

Q�, Q� = transverse shear stress resultant (per unit length)
R = distance of a point on the reference surface of the

shell of revolution from the shell axis, R� sin�
R� = radius of curvature of the reference surface of the

shell in the circumferential � direction
R� = radius of curvature of the reference surface of the

shell in the meridional � direction
t = thickness of a single ply of the filament-wound

shell of revolution
u0� = reference surface displacement of the shell wall in

the circumferential direction
u0� = reference surface displacement of the shell wall

along the shell meridian

w0 = reference surface displacement of the shell wall in
the transverse direction

x = axial coordinate of the cylindrical shell
� = local winding angle
� = angle between the tangents drawn to the reference

surfaces at the junction
�c = cone angle
��, �� = rotations of transverse normal about � and �

curvilinear coordinates, respectively.
�0�� = transverse shear strain in �-� plane

�0�� = transverse shear strain in �-� plane

�0�� = in-plane shear strain of the reference surface

"0��, "
0
�� = reference surface normal strains along the � and �

curvilinear coordinates, respectively
� = curvilinear coordinate in the thickness direction,

measured from the reference surface
� = circumferential coordinate of the shell of

revolution
��� = twisting curvature of the reference surface
���, ��� = bending curvatures of the reference surface
�12 = Poisson’s ratio
	 = mass density
� = meridional coordinate of the shell of revolution

Introduction

R ING-STIFFENED composite branched shells of revolution are
widely used in various engineering structures such as rocket

fuselages, pressure vessels, submarines, aircraft fuselages, external
stores, antenna, etc. Ring stiffeners are not only used to reinforce the
whole structure, but they are also used in the connection of the shell
segments to construct shells of revolution of one type with a longer
meridian and to connect different shells of revolution at the junctions
where the shell branches to a different type. Today, due to the avail-
ability of various composite manufacturing techniques, it is possible
to easily manufacture composite branched shells of revolution.
Among the various manufacturing methods, filament-winding is the
most commonly used technique to produce geometrically axisym-
metric structures [1]. It was probably thefirstmethod to be automated
and remains one of the most cost-effective methods for mass
production today. With the filament-winding technique truncated
and closed, shells of revolution with general meridional curvature
can be manufactured by using mandrels of the required shape.
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During the filament-winding process, filaments are usually placed
in arbitrary orientation with respect to the geometric axis of the shell
of revolution. In the present state of the art, the filament-winding
process is usually applied by using geodesic paths. For composite
conical shells of revolution, it has been shown that when filaments
are placed in arbitrary orientation along the geodesic fiber path with
respect to the geometric axis of the shell, the thickness and the
winding angle (and thus the stiffness coefficients) vary only along the
meridional direction [2–4]. In the case of shells of revolution with
general meridional curvature, the winding angle and the thickness of
the shell of revolution also vary only along the meridional direction
if the filaments are placed along the geodesic fiber path [5]. The
meridional variation of the winding angle and the thickness of
filament-wound shells of revolution brings about additional com-
plexity in the solution of structural mechanics problems pertaining to
composite shells of revolution.

Most of the previous work on the study of the free-vibration
characteristics of composite shells of revolution has been performed
on certain types of shells of revolution without any branch. Some
examples from the vast literature include thework of Noor and Peters
[6], who used a combination of Fourier series representation in the
circumferential direction and a three-field mixed finite element
model for the discretization in the meridional direction. Cylindrical
and toroidal shells of revolution were analyzed in [6]. A semi-
analytical study of laminated cylindrical and conical shells of
revolution has been performed byXi et al. [7],who used conicalfinite
elements and included transverse shear deformation in their analysis,
and constant-stiffness coefficients were used in the analysis of
conical shells of revolution. Tan [8] presented an efficient substruc-
turing analysismethod for predicting the natural frequencies of shells
of revolution using the Sturm sequence method in conjunction with
the massive substructuring technique. The solution procedure was
capable of handling a general type of material property and any kind
of boundary condition. Timarci and Soldatos [9] used the state-space
concept on the Love-type version of a unified shear deformable shell
theory and studied the axisymmetric and flexural vibrations of
angle-ply laminated circular cylindrical shells. In [10] a general
semi-analytical finite element model was developed for bending,
free-vibration, and buckling analyses of laminated shells of
revolution, and results were obtained for cylindrical shells. Three-
dimensional elasticity theory was used and the equations of motion
were obtained by expanding the displacement field and load in the
Fourier series in terms of the circumferential coordinate. In these
studies, consideration of the variation of the stiffness coefficients
with the shell coordinates was not taken into account. It was con-
cluded by Baruch et al. [2] that the stiffness coefficients needed for
the analysis of a laminated structure have to be calculated only after
taking into account the manufacturing process that can be used to
build the structure. The stiffness coefficients of filament-wound
laminated shells of revolution strongly depend on the meridional
coordinate of the shell of revolution, and therefore the variation of the
winding angle and thickness (and thus the variation of the stiffness
coefficients) have to be taken into account in the structural analysis of
filament-wound composite shells of revolution. In the literature, very
few studies considered the variation of the stiffness coefficients in
the structural analysis of composite shells of revolution with variable
radii of curvature. Among these studies, Korjakin et al. [3] inves-
tigated the damped vibrations of laminated conical shells by finite
element analysis and incorporated the effect of the variation of the
winding angle and thickness on the natural frequencies of laminated
conical shells. Park et al. [5] calculated the filament-winding patterns
using a semigeodesic-fiber-path equation for an arbitrary surface and
incorporated the effect of winding angle and thickness change in the
finite element analysis of filament-wound composite structures by
the commercial code ABAQUS. A comprehensive study of the effect
of the variation of the stiffness coefficients on the buckling behavior
of filament-wound conical shells was performed by Goldfield and
Arbocz [4]. Recently, Kayran and Yavuzbalkan [11] studied the
effect of the variation of stiffness coefficients on the free-vibration
characteristics of filament-wound shells by a semi-analytical method
based on the numerical integration of the governing equations.

There has not been much study in the literature on the branched
composite shells of revolution with ring stiffeners. One study on the
combined and stiffened shells of revolution is the work of Sivadas
and Ganesan [12], who studied the free-vibration characteristics of
cylinder–cone combined shells with stiffeners using a higher-order
semi-analytical finite element. Most of the other work on the ring-
stiffened composite shells of revolution has been primarily on shells
without any branch and on cylindrical shells of revolution. Ruotolo
[13] studied the dynamics of shells of revolution reinforced with ring
stiffeners and compared the Donnell, Love, Sanders, and Flügge
thin-shell theories in the evaluation of natural frequencies of cylin-
ders stiffened with rings. In [13] results were obtained for isotropic
and specially orthotropic cylinders that were simply supported at the
edges. Xiang et al. [14] presented an analytical method based on the
state-space technique and domain-decomposition approach to deter-
mine the natural frequencies of isotropic cylindrical shells having
multiple intermediate ring supports and various combinations of
end-support conditions. Wang and Lin [15] presented an analytical
methodology for the vibration analysis of ring-stiffened cross-ply
laminated cylindrical shells and studied the effect of inner and outer
rings on natural frequencies of ring-stiffened cross-ply laminated
cylindrical shells. Pan et al. [16] conducted a study on the free-
vibration analysis of ring-stiffened thin circular cylindrical shells
with arbitrary boundary conditions.

The main objective of the current paper is to present a method-
ology based on numerical integration technique to investigate the
free-vibration characteristics of filament-wound branched shells of
revolution with ring stiffeners. Multisegment numerical integration
technique [17] is combined with a modified-frequency trial method,
and discrete and continuous variation of the shell properties along the
meridian of the shell of revolution is included in the analysis. Thus,
the application of the multisegment numerical integration technique
is extended to the free-vibration analysis of anisotropic branched
shells of revolution and to the analysis of anisotropic branched shells
of revolution with ring stiffeners that are placed asymmetrically with
respect to themiddle surface of the shell of revolution. Themethod of
solution is applicable to any linear shell theory, but in the present
study, first-order shear deformation theory based on Reissner–
Naghdi shell equations [18] is used. To handle branched shells of
revolution, modifications that are necessary to incorporate junctions
are added to the solution procedure. Two alternative methods are
demonstrated for the inclusion of ring stiffeners into the numerical-
integration-based free-vibration analysis. Ring stiffeners are
modeled as shell segments with different thickness and material
properties, and it is assumed that perfect bonding exists between the
shell wall and the ring stiffeners. Since first-order transverse shear
deformation theory is used, moderately thick ring stiffeners could be
modeled. It is assumed that composite branched shells of revolution
with ring stiffeners are manufactured by the filament-winding
process by placing filaments along the geodesic fiber path on the
surface of the shell of revolution. Therefore, the variation of the
winding angle and the thickness along the meridian of the branched
shell of revolution is also included in the numerical-integration-
based method of free-vibration analysis. It should be noted that
numerical integration method of analysis is basically a semi-
analytical procedure with the inherent advantageous features of
the applicability to any linear shell theory and to general shells of
revolution with no restriction on the type of boundary conditions at
two ends of the shell. Numerical-integration-based solution tech-
nique especially presents significant advantages for the analysis of
shells of revolution with variable properties along the meridian
of the shell.

Governing Equations of Anisotropic
Shells of Revolution

In this section, governing equations of free vibration of anisotropic
shells of revolution will be reviewed briefly to build the foundation
for the description of the extension of the method of solution to
branched anisotropic shells of revolution with ring stiffeners.
Figure 1 shows the geometry notation used for a shell of revolution.

750 KAYRAN ANDYAVUZBALKAN



Figure 1 shows that the reference surface of the shell of revolution
is characterized by two radii of curvature, R� and R�, in the meridi-
onal and circumferential directions, respectively. The spatial position
of a representative point in the shell wall is defined by the inde-
pendent coordinates �, �, and �.

The starting point in the application of the numerical integration
technique for the solution of the free-vibration problem of a shell of
revolution is to express the equations governing the freevibration as a
system of partial differential equations given in the form of Eq. (1)
[11,19]:

@

@�
f ��; �; t�g

� f
�
f ��; �; t�g; @

@�
�f ��; �; t�g�; @

2

@2�
�f ��; �; t�g�

�
(1)

where f g is a vector representing the fundamental shell variables
that enter into the appropriate boundary conditions on a rotationally
symmetric edge of the shell of revolution, and for the Reissner–
Naghdi improved shell theory, they are given by [20,21]

f ��; �; t�g � fw0; u0�; u
0
�; ��; ��; Q�; N��; N��;M��;M��gT (2)

The first half of the vector f g consists of the reference-plane
displacements and rotations and the second half consists of the stress
and moment resultants that are defined in an appropriate manner
[20,22].

The system of equations given by Eq. (1) is derived by the com-
plex manipulation of three set of equations that are the strain-
displacement relations of the Reissner–Naghdi shell theory [20,21],
dynamic equilibrium equations [20,21], and full anisotropic form of
the constitutive relations relating the stress and moment resultants to
midsurface strains and curvatures of the laminated shell wall [22].
For laminated composite structures, full anisotropic form of the
constitutive relations relating the stress and moment resultants to
midsurface strains �"0��; "0��; �0��� and curvatures ����; ���; ���� are
given in matrix form by Eq. (3) [22]:8>>>>>><
>>>>>>:

N��
N��
N��
M��

M��

M��

9>>>>>>=
>>>>>>;
�

A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66

2
6666664

3
7777775

8>>>>>><
>>>>>>:

"0��
"0��
�0��
���
���
���

9>>>>>>=
>>>>>>;

(3)

where Nij terms represent force per unit length, and Mij terms
represent moment per unit length. The stiffness coefficients are
expressed in the usual manner [22]. Transverse shear stress resultants
are related to transverse shear strains ��0� ; �0�� by Eq. (4):�

Q�

Q�

�
� As44 As45

As45 As55

� ��
�0�
�0�

�
(4)

In Eq. (4) the transverse shear stiffness coefficients are given
by [22]

�As44; As45; As55� �
XNL
k�1

Z
hk

hk�1

� �Q�k�44 ; �Q
�k�
45 ;

�Q�k�55 �f��� d� (5)

where

f��� � 5

4

�
1 � 4

�
�

h

�
2
�

(6)

In Eq. (5) it is assumed that the transverse shear stress has a
parabolic distribution across the shell wall. A factor of 5/4 multiplies
the distribution function used byWhitney [23] so that the shear factor
calculated for the layered anisotropic shell wall can be consistent
with the established shear factor from the previous work of Reissner
[18] and Mindlin [24] for the homogenous case.

In the derivation process of dynamic equilibrium equations,
application of Hamilton’s principle also generates conditions on the
boundary displacements and rotations, and boundary stress and
moment resultants that are applied at the edge of a shell of revolution
at a constantmeridional coordinate�. For the free-vibration problem,
boundary conditions are given by setting one of the variables,
given inside the parentheses of the shell variable pairs in Eq. (7), to
zero [20]:

�N��; u0��; �N��; u0��; �Q�;w
0�; �M��; ���; �M��; ��� � 0 (7)

For a laminated composite structurewhen the full anisotropic form
of the constitutive relations is used, the existence of full coupling
stiffness coefficients precludes the uncoupling of fundamental
system of shell equations, describing the symmetric and antisym-
metric responses with respect to the circumferential coordinate �, by
the classical sine or cosine Fourier decomposition of the fundamental
shell variables. Therefore, to accomplish the uncoupling of the cir-
cumferential coordinate from the fundamental system of equa-
tions, finite exponential Fourier transform of each fundamental
variable is taken. In the following, it is assumed that for the free-
vibration analysis, the time dependence of each quantity in synchro-
nousmotion appears in a factor ei!t, where! is the natural frequency.
Therefore, time variable is eliminated from the definition of the
fundamental variable vector. Equation (8) shows the exponential
Fourier transform of the fundamental variable vector f g:

1

2


Z
2


0

f ��; ��ge�in� � f nc���g � if ns���g (8)

where

f nc���g �
1

2


Z
2


0

f ��; ��g cos n� d� (9)

f ns���g �
1

2


Z
2


0

f ��; ��g sinn� d� (10)

The actual physical fundamental shell variables are constructed by
the complex Fourier series given in Eq. (11):

f ��; ��g �
X�1
�1
f n���gein� (11)

It is evident from Eq. (8) that application of finite exponential
Fourier transform results in doubling of the number of fundamental
variables. Finite exponential Fourier transform of the fundamental
systemof partial differential equations (1) yields a systemof ordinary
differential equations in terms of the transformed fundamental shell
variables:

d

d�
f g � d

d�

�
 �1����
 �2����

�
20�1
� �K�n; !; ���20�20

�
 �1����
 �2����

�
20�1
(12)

Fig. 1 Geometry and coordinate system of shell of revolution.
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where n is the circumferential wave number, and the partitions of the
fundamental variable vector are given by

f �1����g � fw0
nc; w

0
ns; u

0
�nc; u

0
�ns; u

0
�nc; u

0
�ns; ��nc; ��ns; ��nc; ��nsgT

(13)

f �2����g � fQ�nc; Q�ns; N��nc; N��ns; N��nc; N��ns;

M��nc;M��ns;M��nc;M��nsgT (14)

The fundamental variable vector is partitioned such that the first
half consists of the transformed displacements and rotations, and the
second half consists of the transformed stress andmoment resultants.
In Eqs. (13) and (14), variables with subscript c refer to symmetric
modes with respect to the tangential coordinate � of the shell of
revolution, and subscript s refers to antisymmetric modes. The
elements of the coefficient matrix K depend on the circumferential
wave number, natural frequency, and meridional coordinate �. The
dependency of the coefficient matrix on the thickness, radii of
curvature, and stiffness coefficients appears through the meridional
coordinate �. For a general shell of revolution with arbitrary change
of geometric and material properties along the meridian of the shell,
thickness, radii of curvature, and stiffness coefficients depend on the
meridional coordinate �. The elements of the coefficientmatrixK for
a general shell of revolution with full macroscopically anisotropic
laminated shell wall are given in the recent work of Kayran and
Yavuzbalkan [11], and they will not be repeated here, for brevity.
Application of the finite exponential Fourier transform to Eq. (7)
results in doubling of the number of boundary conditions that are
defined in terms of cosine and sine parts of the Fourier transform of
the fundamental shell variables. Thus, for the first-order shear
deformation theory, 10 boundary conditions need to be applied
at an edge of the shell of revolution. The fundamental system of
equations (12) together with the finite exponential Fourier transform
of the boundary conditions (7) specified at the two boundary edges of
an anisotropic shell of revolution completely define an eigenvalue
problem.

Variation of Winding Angle and Thickness
of Filament-Wound Shells of Revolution

In filament-winding operation, fibers are placed along arbitrary
paths on the surface of a mandrel that is used to manufacture the
required shell of revolution. Common practice in filament-winding
operation is to place the fibers along the geodesic path on the surface
of the shell of revolution. The geodesic path connects two points
along the shortest distance on the surface of a shell of revolution.
Placement of fibers along the geodesic path results in a stable system,
and hence no friction is required to keep the fiber from slipping. For a
general shell of revolution that is filament-wound by placing the
fibers along the geodesic path, the local winding angle changes along
the axis of the shell of revolution. The change of thewinding angle is
given by Eq. (15) [5,11]:

sin�� sin�1
sin�1
sin�

� sin�1
R1

R
(15)

where � is the local winding angle at ��; R� and �1 is the initial
winding angle at the location ��1; R1�. Based on the initial the
winding angle at the starting edge of the winding operation, the
winding angle at any meridional location � can be determined from
Eq. (15).

In filament-winding operation, any unit length of the filament
bringswith itself the same amount ofmatrixmaterial, and the number
of filaments at any cross section is always constant. Thus, it follows
that the thickness of a general filament-wound shell of revolution, at
any axial location, can be calculated from Eq. (16) [4,5,11]:

t� t1
R1 cos�1
R cos�

(16)

where t is the local thickness of the single ply at location ��; R�, � is
the local winding angle, and t1 is the thickness of the single ply at
location ��1; R1�, where the winding angle is �1. Based on the initial
thickness of the single ply at the starting edge of the winding
operation, the thickness of the single ply at anymeridional location �
can be determined from Eq. (16). The variation of the winding angle
and the thickness of the filament-wound general shell of revolution
given by Eqs. (15) and (16) also cause the stiffness coefficients Aij,
Bij, and Dij to vary along the meridian of the shell continuously.
Therefore, the elements of the coefficient matrix K [Eq. (12)] vary
continuously along the meridian of the shell of revolution. For
filament-wound shells of revolution with constant radii of curvature,
such as a cylindrical shell of revolution, the local winding angle and
thickness remains constant and the elements of the coefficient matrix
K are also constant.

Extension of the Numerical Integration Technique
to Branched Shells of Revolution

Method of Solution

In this section the extension of the multisegment numerical
integration technique to the free-vibration analysis of filament-
wound branched shells of revolution will be explained. In the multi-
segment numerical integration technique, the shell is divided intoM
number of segments in the meridional direction and the solution to
Eq. (12) can be written as [17]

f ���g � �Ti����f ��i�g �i� 1; 2; . . . ;M� (17)

where the transfer matrices Ti are obtained from the initial-value
problems defined in each segment i by

d

d�
�Ti���� � �K�n; !; ����Ti���� (18)

�Ti��i�� � �I� (19)

At the start of each shell segment, the transfer matrices are initialized
to identity matrices.

The initial step in the solution procedure is to integrate Eq. (18),
subject to initial conditions Eq. (19), in each shell segment and store
the elements of the transfer matrices at the end of each shell segment.
For a particular circumferential wave number and trial frequency,
Eq. (18) is numerically integrated and the arbitrary variation of the
geometric andmaterial properties of the shell of revolution is handled
during the numerical integration process. In the current study,
numerical integration of Eq. (18) within each shell segment is
performed by the International Mathematical and Statistical Library
subroutineDIVPAG that uses a user-supplied subroutine inwhich all
the elements of the coefficient matrixK are given. Therefore, as long
as the discrete or continuous variation of the elements of the coeffi-
cient matrix along the meridian of the branched shell of revolution is
coded accordingly, arbitrary variation of the shell properties can be
handled, provided that the transformation of the fundamental shell
variables are done properly at the junctions where the shell branches
into a different type. In the current study the branched shell of
revolution is assumed to be manufactured by the filament-winding
process, such that thewinding angle and the thickness vary according
to Eqs. (15) and (16). Thus, the stiffness coefficients also vary con-
tinuously along the meridian of the shell of revolution. However, the
continuous variation of the stiffness coefficients and the thickness
does not generate additional difficulty in the numerical integration of
Eq. (18) in each shell segment.

The solution procedure for the anisotropic branched shell of
revolution will be demonstrated for a branched shell consisting of
two distinct regions. Figure 2 shows the reference surface of a
branched shell of revolution with two distinct regions S1 and S2. In
Fig. 2 j denotes the location of the junction at which the shell geom-
etry branches into a different type. T1 and T2 denote the tangents
drawn at the junction j on the reference surface of the branched shell
of revolution with distinct regions S1 and S2.
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The initial-value problems defined by Eqs. (18) and (19) can be
written in two distinct shell regions S1 and S2 as

d

d�
�Ti����S1 � �K�n; !; ���S1�Ti����S1 �Ti��i��S1 � �I� (20)

d

d�
�Ti����S2 � �K�n; !; ���S2�Ti����S2 �Ti��i��S2 � �I� (21)

where any changes in the geometry andmaterial properties of the two
different shell types are assumed to be reflected in the coefficient
matrices KS1 and KS2. The fundamental shell variable vector f g is
also defined in two distinct shell regions S1 and S2 as f gS1 and
f gS2. After the numerical integration of Eqs. (20) and (21) is
accomplished, the transfer matrices are stored at the end of each shell
segment. To proceed with the free-vibration analysis of the branched
shell of revolution, the continuity relations of the fundamental
variables at the end of each shell segment must be written. At the
junction of the branched shell of revolution, the fundamental
variables of the shell S1 and the fundamental variables of the shell S2
must obey the following transformation relations:

f �1���j�gS2 � �TR�10�10f �1���j�gS1
f �2���j�gS2 � �TR�10�10f �2���j�gS1

(22)

where the transformation matrix TR transforms the partitioned
vectors given by Eqs. (13) and (14). The nonzero coefficients of the
transformation matrix are given in the Appendix. The coefficients of
the transformation matrix are obtained by expressing the elements of
the partitioned fundamental variable vectors �1� and �2� of the shell

S2, in terms of the elements of the partitioned fundamental variable
vectors of the shell S1 at the junction. The continuity relations are
expressed over the whole span of the branched shell of revolution by

writing out Eq. (17) in each shell segment together with the
transformation relations at the junction [Eq. (22)]:(

 �1���i�1�
 �2���i�1�

)
S1

�
T�1�i ��i�1� T�2�i ��i�1�
T�3�i ��i�1� T�4�i ��i�1�

" #(
 �1���i�
 �2���i�

)
S1

�i� 1; 2; . . . ; j � 1� (23)

�
 �1���j�
 �2���j�

�
S2

� TR 0

0 TR

� �
i

�
 �1���j�
 �2���j�

�
S1

�i� j� (24)

(
 �1���i�1�
 �2���i�1�

)
S2

�
T�1�i ��i�1� T�2�i ��i�1�
T�3�i ��i�1� T�4�i ��i�1�

" #
S2

(
 �1���i�
 �2���i�

)
S2

�i� j; . . . ;M� (25)

For shells of revolutionwithout a branch, Eqs. (20) and (21) reduce
to a single equation, � is zero, and the continuity relations are valid
for a single shell of revolution. In this case the transformation matrix
reduces to an identitymatrix and the transformation relation given by
Eq. (24) is a trivial relation. For the branched shell of revolution that
has a common tangent at the junction, � is again zero, but Eqs. (20)
and (21) remain as two distinct equations in this case, since the
elements of the coefficient matrices KS1 and KS2 may have different
expressions, depending on the shell types. In this case, Eq. (24) again
becomes a trivial relation.

For computational ease, the rows of the fundamental variable
vector at both ends of the shell, �1 and �M�1, are adjusted such that
for the anisotropic branched shell of revolution, the first 10 elements
of f ��1�gS1 and the last 10 elements of f ��M�1�gS2 are the
prescribed boundary conditions. In the following, to keep the
uniformity of the notation used for the partitioned fundamental
variable vector, the boundary conditions are also represented by the
same vector notation defined by Eqs. (13) and (14). Therefore, the
boundary condition at the ends of the branched shell of revolution is
expressed by

f �1���1�gS1 � f �2���M�1�gS2 � 0 (26)

Continuity relations (23–25) constitute a system of linear homog-
enous matrix equations with 2M unknown partitioned fundamental
variable vectors. After writing out Eqs. (23–25) in each shell segment
i separately, thewhole equation set is brought into an upper triangular
matrix equation by Gauss elimination:

E1 �I 0 0

0 C1 �I 0 0

. .
. . .

. . .
. . .

. ..
.

0 Ej�1 �I 0 0

0 Cj�1 �I 0 0

0
EZ �I 0 0

0
CZ �I 0 0

0 Ej �I 0 0

0 Cj �I 0

. .
. . .

. . .
. ..

.

0 EM �I
0 	 	 	 0 0 0 0 0 0 0 0 0 CM

2
666666666666666666664

3
777777777777777777775

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

 �2�S1 ��1�
 �1�S1 ��2�

..

.

 �2�S1 ��j�1�
 �1�S1 ��j�
 �2�S1 ��j�
 �1�S2 ��j�
 �2�S2 ��j�
 �1�S2 ��j�1�

..

.

 �2�S2 ��M�
 �1�S2 ��M�1�

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

� 0 (27)

whereEi andCi represent the 10 � 10 submatrices that are expressed

in terms of the partitioned transfer matrices T�1;2;3;4�i . In the first shell,
S1 submatrices Ei and Ci are calculated from

Fig. 2 Generator of the reference surface of a branched shell of

revolution.

KAYRAN ANDYAVUZBALKAN 753



E1 � T�2�1 (28)

C1 � T�4�1 E
�1
1 (29)

Ei � T�2�i � T
�1�
i C

�1
i�1 �i� 2; 3; . . . ; j � 1� (30)

Ci � �T�4�i � T
�3�
i C

�1
i�1�E�1i �i� 2; 3; . . . ; j � 1� (31)

The transition matrices EZ and CZ are calculated from

EZ � �TR�C�1j�1 (32)

CZ � �TR�E�1Z (33)

In the second shell, S2 submatrices Ei and Ci are calculated from

Ej � T�2�j � T
�1�
j C

�1
Z (34)

Cj � �T�4�j � T
�3�
j C

�1
Z �E�1Z (35)

Ei � T�2�i � T
�1�
i C

�1
i�1 �i� j� 1; . . . ;M� (36)

Ci � �T�4�i � T
�3�
i C

�1
i�1�E�1i �i� j� 1; . . . ;M� (37)

For the anisotropic branched shell of revolution, the natural
frequency is determined from the last row of Eq. (27) by requiring the
determinant of the coefficient matrix CM to vanish. Solution of the
natural frequencies is accomplished by evaluating the determinant of
the characteristic matrix for incremented values of frequency esti-
mates within a frequency range of interest. When the finite expo-
nential Fourier transform of the fundamental shell equations was
used, it was observed that determinant of the characteristic matrix
does not change sign; rather, it is always positive and vanishes at the
eigenvalue [11]. Therefore, a slope change detection algorithm in
combination with inverse interpolations was devised to extract the
natural frequency. The method essentially relies on checking the
slope change of the determinant of the characteristic matrix and
detecting an interval at which a natural frequency resides. Once an
interval is determined, natural frequency is extracted by successive
inverse interpolations. The details of the natural frequency extraction
algorithm are described in [11]. It should be noted that extension
of the multisegment numerical integration technique to the free-
vibration analysis of branched shells of revolution is simply
accomplished by defining the transformation matrices TR at each
junction j and modifying Eq. (27) by inserting new rows 2j � 1 and
2j, which include the transition matrices EZ and CZ.

For each natural frequency determined, the partitioned funda-

mental variable vector �1�S2 ��M�1� at the end of the branched shell of
revolution is determined up to an arbitrary constant. The remaining
unknown fundamental variables at the end of each shell segment of
distinct shell regions S1 and S2 are then calculated successively from

 �2�S2 ��M� � E�1M  
�1�
S2 ��M�1� (38)

 �1�S2 ��M�i�1� � C�1M�i 
�2�
S2 ��M�i�1� �i� 1; 2; . . . ;M � j�

(39)

 �2�S2 ��M�i� � E�1M�i 
�1�
S2 ��M�i�1� �i� 1; 2; . . . ;M � j� (40)

 �1�S2 ��j� � C�1Z  
�2�
S2 ��j� (41)

 �2�S1 ��j� � E�1Z  
�1�
S2 ��j� (42)

 �1�S1 ��j�i�1� � C�1j�i 
�2�
S1 ��j�i�1� �i� 1; 2; . . . ; j � 1� (43)

 �2�S1 ��j�i� � E�1j�i 
�1�
S1 ��j�i�1� �i� 1; 2; . . . ; j � 1� (44)

At the junction �j, the elements of the partitioned transformed
fundamental variable vector are calculated in each distinct shell of
revolution (S1 and S2), successively, from Eq. (40) for i�M � j,
Eqs. (41) and (42), and Eq. (43) for i� 1. Therefore, at the junction,
there are two fundamental variable vectors that are defined with
respect to the reference surfaces of distinct shells of revolution, S1
and S2. The variation of all the transformed fundamental shell vari-
ables along the meridian of the shell of revolution can be determined
from Eqs. (38–44). The physical fundamental shell variables can
then be determined by using the cosine and sine parts of the Fourier
transform of the fundamental shell variables in the complex Fourier
series representation equation (11) for the particular circumferential
vibration mode that is analyzed.

Verification Study

Application of the multisegment numerical integration technique
is first demonstrated for the cylinder–cone combination shown in
Fig. 3, which shows the reference surface of the branched shell of
revolution. The lengths of the meridian of the cylindrical and conical
parts are denoted byLS1, andLS2, respectively. The shell variables are
defined with respect to the reference surfaces of the distinct shell
regions, and in accordance with this definition, the lateral displace-
ments w0

S1 and w0
S2 are shown perpendicularly to the reference

surface of the shell.
In the verification study, no change of the winding angle and the

thickness of the conical shell are considered, and constant-stiffness
coefficients are used. The particular cylinder–cone combination is
assumed to be composed of two plies with the following geometrical
and material properties.

Geometric properties are cylinder radius R� 0:1 m and axial
lengths of the cylinder and the cone of LS1 � LS2 � cos�c � 0:4 m.
Ply material properties are Young’s modulus in the fiber direction,
E1 � 213:74 GPa; Young’s modulus transverse to fiber, E2�
18:62 GPa; shear moduli G12 �G13 � 5:171 GPa and G23�
4:137 GPa; Poisson’s ratio �12 � 0:28; mass density 	�
2051:88 kg=m3; fiber orientation and stacking sequence of 0
/45
;
and ply thickness of 1 mm.

The branched shell of revolution is assumed to be free at the left
end of the cylinder and clamped at the right end of the cone. Free-
vibration analysis is performed for different cone angles�c in the
range of 0–30
. The results obtained by the numerical-integration-
based method are compared with the results of finite element
solution, which is performed byNastran [25] using the isoparametric
curved thin-shell element QUAD8, which contains four corner grid
points and four edge grid points. Layer materials are defined as two-
dimensional orthotropic materials, and transverse shear behavior is
included in thematerial definition. The comparison of thevariation of
the scaled nondimensional fundamental natural frequency W with
the cone angle determined by the present method and the finite
element solution, which uses the Lanchzos algorithm, is presented in

Fig. 3 Generator of the reference surface of the cylinder–cone

combination.
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Fig. 4 for n� 1. The scaled nondimensional frequencyW is given by
Eq. (45):

W � !h
�������������
	=E11

p
� 1000 (45)

Before comparing the results of the numerical-integration-based
solution technique with the results of the finite element method, the
effect of the finite element mesh size on the natural frequency
calculated by Nastran was investigated. Table 1 presents a sample
convergence study that shows the nondimensional frequencies calcu-
lated by Eq. (45) for three different mesh sizes and the frequency
calculated by the presentmethod for the cylindrical-conical branched
shell of revolution with a cone angle of 5
. In the convergence study,
the circumferential wave numbernwas taken as 1. Table 1 shows that
the frequencies calculated by Nastran did not change significantly
with themesh size used in thefinite elementmodel. For this particular
case, the modal frequency was about 475 Hz, and the differences
between the natural frequencies obtained by different mesh sizes are
on the order of a few hertz.

In Fig. 4 good agreement is also observed between the present
solution and the solution by Nastran for other cone angles. Both
methods predicted similar variation of the fundamental natural
frequency with the cone angle. It should be noted that in Fig. 4, the
maximum difference between the Nastran results and the present
solution is under 3%.

Sample Results on the Sphere–Cone Combination

with Variable-Stiffness Coefficients

A sample analysis has been performed for the truncated sphere–
cone combination shown in Fig. 5. The left part of the junction of the
branched shell of revolution is a truncated sphere and the right part is
a conical shell.

The particular sphere–cone combination is assumed to be
manufactured by the filament-winding operation by starting the
winding at the left end of the truncated sphere, and for the geodesic
fiber path, thewinding angle and the thickness along the shell axis are
assumed to vary according to Eqs. (15) and (16), respectively. The
particular sphere–cone combination is assumed to have the following
geometric and material properties.

For the sphere, radiusR� 0:21 m,�1 � 30
,�2 � 70
, and initial
winding angle at the left end is 55
. For the cone, axial length
L� 0:315 m, and cone angles are �c � 10, 20, and 30
. The
stacking sequence ��= � �=�= � �=�= � �=�= � �=�= � �=�= � ��S

is symmetric with 24 layers, ply thickness is 0.24 mm at the starting
edge of the initial winding, and ply materials are the same as in the
cylinder–cone example.

For this particular example, continuity of the winding angle and
the thickness is assumed at the junction. Figure 6 shows the variation
of the winding angle and the normalized total shell thickness along
the axis of the sphere–cone combination for three different cone
angles �c. In Fig. 6, the coordinate along the meridian of the shell is
normalized separately with respect to the length of the meridian of
the spherical and conical parts, and thicknesses are normalized with
respect to the thickness at the left end of the spherical part, where the
filament-winding operation is assumed to start.

It is seen from Fig. 6 that when the winding starts from the small
radius edge of the spherical part, thewinding angle and the thickness
decreases along the meridian of the branched shell of revolution in
accordance with Eqs. (15) and (16). For higher cone angles, the
decrease in the winding angle and the thickness is higher in the
conical part.

To demonstrate the effect of the variation of thewinding angle and
the thickness on the stiffness coefficients, variation of some of the
stiffness coefficients along the meridian of the branched shell of
revolution is shown in Fig. 7. Figure 7 gives the variation of the nor-
malized extensional stiffness coefficientsAij and normalized bending
stiffness coefficients Dij with respect to the normalized meridian of
the sphere–cone combination.

In Fig. 7 extensional stiffness coefficients are normalized with
respect to the value of A11, and bending stiffness coefficients are
normalizedwith respect to the value ofD11 at the small radius edge of
the spherical shell. Stiffness coefficients in the circumferential
direction are drawn on logarithmic scale because of the sharp
decrease of the circumferential stiffness coefficients �A22; D22� along
the meridian of the branched shell of revolution. For the initial
winding angle of 55
, it is observed that except for the extensional
stiffness coefficient in the meridional direction (A11), the stiffness
coefficients decrease along the whole meridian of the branched shell
of revolution. It should be noted that for afixed shell-wall thickness at
the starting edge of the filament-winding operation, the variation of
the stiffness coefficients is strongly related to the initial winding
angle and the starting edge of thewinding. It is also noted from Fig. 7
that when the cone angle is increased, in accordance with the
variation of the winding angle and the thickness, the decrease in the
stiffness coefficients along themeridian of the conical shell is higher.

By incorporating the variation of the stiffness coefficients and
thickness in the coefficient matrices of Eqs. (20) and (21), free-
vibration analysis of the sphere–cone combination has been per-
formed. The branched shell of revolution is assumed to be clamped at
the small radius edge of the spherical part and free at the large-radius
end of the conical part. Figure 8 shows the variation of the scaled
nondimensional fundamental natural frequency [Eq. (45)] of the
sphere–cone combination with respect to circumferential wave
number for three different cone angles �c.

The results in Fig. 8 are presented for the nonaxisymmetric
vibration modes, and it is observed that at high circumferential wave
numbers, the natural frequency of the branched shell of revolution
with a lower cone angle is also higher. This behavior is attributed to
the dominance of the bending strain-energy contribution to the total
strain energy at high circumferential wave numbers [26]. At high
circumferential wave numbers, circumferential slices of the shell

Fig. 4 Fundamental frequency versus cone angle for the cylinder–cone
combination (n� 1).

Table 1 Variation of the nondimensional frequency

W by the mesh size (n� 1 and �c � 5�)

Number
of nodes

Number
of elements

Nastran
solution

Present
solution

3,616 1,184 0.5870 0.5987
14,112 4,662 0.5885 0.5987
20,444 6,764 0.5888 0.5987

Fig. 5 Generator of the reference surface of the sphere–cone

combination.
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essentially behave like a beam under circumferential bending, and
the bending stiffness coefficient in the circumferential direction
(D22) predominantly governs themagnitude of the natural frequency.
It is deemed that higher circumferential bending stiffness and the
shorter distance between the nodalmeridians in the conical part of the
branched shell of revolution with a lower cone angle account for the
increase of the natural frequency at high circumferential wave
numbers. It can also be deduced from Fig. 8 that at high circum-
ferential wave numbers, the effect of the stiffness becomes more
dominant on the natural frequencies, compared with the effect of the
inertia. Although the conical part of the branched shell of revolution
with a lower cone angle has higher thickness, and this implies higher
inertia, the natural frequencies of the low-cone-angle branched shell
are still higher at high circumferential wave numbers. At low
circumferential wave numbers, extensional strain energy is more
dominant in its contribution to the total strain energy [26], and it

should be expected that the extensional stiffness coefficients become
more dominant on the natural frequencies. For the beam vibration
mode (n� 1) of the branched shell of revolution, natural frequency
of the lower-cone-angle shell (which has higher extensional stiffness
coefficients in the conical part) is higher. This conclusion supports
the dominance of the extensional strain energy at low circumferential
vibration modes. However, because the geometries of the branched
shells of revolution are different due to the different cone angles of
the conical part, a general statement cannot be made with regard to
the effect of the extensional stiffness coefficients on the natural
frequencies at low circumferential wave numbers.

For the sphere–cone combination, the normalized fundamental
lateral-displacement mode shape (w0), which is obtained through the
recursive relation equations (38–44), is plotted in Fig. 9 for two
different cone angles and for a circumferential wave number of 4.
Figure 9 shows the cosine and sine parts of the Fourier transform of

Fig. 6 Variation of winding angle and thickness along the axis of sphere–cone combination.

Fig. 7 Variation of stiffness coefficients of the sphere–cone combination for different cone angles.
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the lateral displacement, and the effect of the branching is clearly
seen at the junction of the spherical and conical part.

Because of the anisotropic nature of the shell-wall layup, the sine
and cosine components of the Fourier transform of the lateral
displacement are both nonzero. However, the sine component of the
lateral displacement is very small compared with the cosine part,
especially for the cone angle of 20
. It should be noted that at the
junction, all the fundamental variables are calculated twice from
Eq. (27). For the cone angle of 20
, the reference surfaces of the
spherical and conical parts of the branched shell of revolution are
tangent to each other at the junction �j. Therefore, there is no kink
in the lateral displacement. For the cone angle of 30
, since the
reference surfaces of the spherical and conical parts of the branched
shell of revolution do not have a common tangent at the junction,
there is a little jump in the lateral displacement at the junction due to
the definition of the fundamental variables with respect to two
different reference surfaces. Once the cosine and sine parts of the
Fourier transform of the fundamental lateral displacement are
determined, the actual lateral-displacement mode shape can be
constructed using the complex Fourier series representation of the
lateral displacement given by Eq. (11) in conjunction with Eq. (8) for
the particular circumferential wave number.

Extension of the Numerical Integration Technique to
Ring-Stiffened Shells of Revolution

In this section, application of the numerical integration technique
is demonstrated for free-vibration analysis of filament-wound shells
of revolution with ring stiffeners. To aid the understanding of the
nomenclature used in the ring-stiffened shells of revolution, Fig. 10
shows central-stiffener and inner-stiffener configurations for the
cylindrical shell geometry. Outer-stiffener configuration is similar to
the inner-stiffener configuration, with the stiffener placed on the
outer surface of the shell rather than on the inner surface.

In Fig. 10,S1 andS3 denote the shell regionswithout any stiffener,
and S2 denotes the shell region with an integral stiffener that is

assumed to be perfectly bonded to the shell wall. In the current study,
ring stiffeners are modeled as shell segments. For the central stiffener
configuration, the effect of the ring stiffener is integrated into the
analysis by expressing the fundamental system of equations, given
by Eq. (12), separately for the distinct shell regions with and without
the stiffener. Fundamental shell variables are defined with respect to
the common reference surface of the shell and the ring stiffener. For
the stiffened part, the coefficient matrix K of Eq. (12) is modified by
updating the laminate stiffness coefficients and thickness pertaining
to the ring stiffener. The solution for the natural frequencies and the
mode shapes then follows the same procedure as in branched shells of
revolution. However, due to the use of the common reference surface
for the shell and the ring stiffener, there is no need for transforming
the fundamental shell variables at the shell-stiffener junction unless
the stiffener corresponds to a branch point.

It is expected that for thicker ring stiffeners, the effect of different
stiffener configurations on the natural frequencies of ring-stiffened
shells of revolution would be higher. Therefore, a methodology is
needed to incorporate different-configuration ring stiffeners into the
free-vibration analysis. In this study, two methods are proposed for
the inclusion of outer- and inner-stiffener configurations into the
numerical-integration-based free-vibration analysis. These methods
are called the fundamental variable-transformation method and
common reference surface method.

Fundamental Variable-Transformation Method

In this approach, the fundamental shell variables are defined with
respect to the reference surfaces of distinct shell regions with and
without the ring stiffeners. Figure 11 shows the fundamental
variables that are defined with respect to the midsurface of the shell
regions with and without stiffener. It should be noted that the choice
of the midsurface as the reference surface is quiet arbitrary and, in
theory, any surface can be selected as the reference surface. However,
the choice ofmidsurface is convenient to demonstrate the application
of the fundamental variable-transformation method. In Fig. 11
positive directions of the fundamental shell variables are shown, and

Fig. 8 Natural frequency versus circumferential wave number for

different cone angles (�c).

Fig. 9 Fundamental lateral-displacement mode shape for the sphere–cone combination (n� 4).

Fig. 10 Stiffener configurations.
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hR denotes the offset between the reference surfaces of the shell walls
with and without stiffener. For the stiffened region, it is assumed that
stiffener thickness plus the shell-wall thickness is the total shell
thickness at that region. It should be noted that for the inner-stiffener
configuration, the radius of the midplane of the stiffener is given by
Rstiffener � Rshell � hR, and for the outer-stiffener configuration, the
radius of the midplane of the stiffener is given by Rstiffener�
Rshell � hR.

In this method, at the shell-stiffener junctions, the fundamental
variables are transformed by using the following relations. Funda-
mental variables that are preserved at the shell-stiffener junctions are
w0, �x, ��, Qx, Nx, and Nx�.

Inner-stiffener case, S1–S2 junction:

�u0x�S2 � �u0x�S1 � hR��x�S1 �u0��S2 � �u0��S1 � hR����S1
�Mx�S2 � �Mx�S1 � hR�Nx�S1 �Mx��S2 � �Mx��S1 � hR�Nx��S1

(46)

Inner-stiffener case, S2–S3 junction:

�u0x�S3 � �u0x�S2 � hR��x�S2 �u0��S3 � �u0��S2 � hR����S2
�Mx�S3 � �Mx�S2 � hR�Nx�S2 �Mx��S3 � �Mx��S2 � hR�Nx��S2

(47)

Outer-stiffener case, S1–S2 junction:

�u0x�S2 � �u0x�S1 � hR��x�S1 �u0��S2 � �u0��S1 � hR����S1
�Mx�S2 � �Mx�S1 � hR�Nx�S1 �Mx��S2 � �Mx��S1 � hR�Nx��S1

(48)

Outer-stiffener case, S2–S3 junction:

�u0x�S3 � �u0x�S2 � hR��x�S2 �u0��S3 � �u0��S2 � hR����S2
�Mx�S3 � �Mx�S2 � hR�Nx�S2 �Mx��S3 � �Mx��S2 � hR�Nx��S2

(49)

Depending on whether the ring stiffener is an inner or outer
stiffener, and depending on the location of the shell-stiffener junction
(shell-stiffener:S1–S2, stiffener shell:S2–S3), transformation ma-
trices can be defined at each junction by using the relations given by
Eqs. (46–49). Thus, the transformation relations in partitioned form
can be written at the shell-stiffener or stiffener-shell junctions in the
same manner as in Eq. (22) or Eq. (24). It should be noted that the
transformation matrices defined at the shell-stiffener and stiffener-
shell junctions are different for the displacements and stress/moment
resultants, and this is clearly seen from Eqs. (46–49). Therefore, it
would be appropriate to modify Eq. (22) as shown in Eq. (50):

f �1���j�gS2 � �TR�110�10f �1���j�gS1
f �2���j�gS2 � �TR�210�10f �2���j�gS1

(50)

where �TR�1 is the transformation matrix that relates the displace-
ments and rotations at the shell-stiffener or stiffener-shell junctions,
and �TR�2 is the transformation matrix that relates the stress and
moment resultants at the shell-stiffener or stiffener-shell junctions.

Following the definition of new transformation matrices, Eqs. (23–
44) would have to be modified appropriately by distinguishing the
new matrices �TR�1 and �TR�2. As long as the transition matrices EZ
and CZ in Eq. (27) are defined appropriately at each junction, the
remaining solution procedure is exactly same as the solution for a
branched shell of revolution.

Common Reference Surface Method

In the common reference surface method, the midsurface of the
shell wall (which is denoted by Rshell in Fig. 11) is also used as the
reference surface for the ring stiffener. All the fundamental variables
are defined with respect to this common reference surface. Since all
the fundamental variables of the shell regions with and without the
ring stiffeners are defined with respect to the common reference
surface, as long as the stiffener edges do not coincide with a junction
where the shell branches to a different type, no transformation of the
fundamental variables is necessary at the shell-stiffener junctions.
Therefore, for the inner- and outer-stiffener configurations to reflect
the changes in the stiffness coefficients and the thickness of the shell
regions with and without the ring stiffener, the only action that needs
to be taken is the modification of the coefficient matrixK in Eq. (18)
by defining appropriate stiffness coefficients and thickness for the
shell wall and the stiffeners. It should be noted that in this method,
while calculating the stiffness coefficients for the inner- and outer-
stiffener configurations, definitions of the layer positions should be
made accordingly by taking themidplane of themain shell wall as the
reference surface. The positive direction of the lateral displacement is
outward and therefore any layer positionmeasured toward the axis of
the shell of revolution from the midplane of the shell wall is taken as
negative, whereas layer position measured outward from the
midplane of the shell wall is taken as positive. Thus, in this method,
the offset distance hR is implicitly taken care of while calculating the
stiffness coefficients.

Comparison of the Methods

To demonstrate the applicability of both methods in the free-
vibration analysis of macroscopically anisotropic ring-stiffened
shells of revolution, a sample study has been performed for a cylin-
drical shell with the following geometric and material properties and
stiffener configurations.

Geometric properties are cylinder length L of 1.2 m, radius of the
reference surface of the shell with no stiffener�RS1; RS3� of 0.21 m,
shell-wall thickness without stiffener of 1.92 mm, shell-wall
thickness with stiffener of 5.76 mm, and stiffener width of 60 mm.
Ply material properties are high-modulus graphite epoxy; E1�
207:348 GPa, E2 � 5:183 GPa, G12 �G23 �G13 � 3:11 GPa,
�12 � 0:25, and 	� 1524:474 kgm�3; thickness is 0.24 mm; shell
wall without stiffener consists of eight plies with 50
 fiber
orientation; and shell wall with stiffener consists of 24 plies with 50


fiber orientation. The inner- and outer-stiffener configurations have a
single stiffener placed at the midspan. For the boundary condition,
the shell is clamped at the left end (x� 0) and simply supported at the
right end (x� L).

Comparison of the natural frequencies [Eq. (45)] determined by
the fundamental variable-transformation method and common ref-
erence surface method is made in Table 2. For the inner- and outer-

Fig. 11 Fundamental variables of shell regions with and without stiffener.

758 KAYRAN ANDYAVUZBALKAN



stiffener configurations, Table 2 lists the scaled fundamental non-
dimensional natural frequencies corresponding to different circum-
ferential wave numbers. As expected, the results of both approaches
are very close to each other for both inner- and outer-stiffener config-
urations. It should be noted that in the common reference surface
method, for a symmetric stacking sequence with respect to the
midsurface of the ring stiffener, bending-stretching coupling coeff-
icients will be nonzero in the stiffener region because of the offset of
the reference surface from themidsurface of the ring stiffener. On the
other hand, in the fundamental variable-transformation method, for
symmetric stacking sequence with respect to the midsurface of the
shell wall with and without the ring stiffener, the bending-stretching
coupling coefficients vanish. It is deemed that both methods can be
used in the analysis of ring-stiffened anisotropic shells of revolution.
However, fundamental variable-transformation method requires the
definition of additional transformation matrices for the fundamental
variables at each shell-stiffener or stiffener-shell junction.

Verification Study

To verify the applicability of the fundamental transformation and
common reference surface methods described above, results of the
present study have been compared with the results of Wang and Lin
[15], who performed an analytic study to calculate the modal
frequencies andmode shapes of a ring-stiffened symmetric cross-ply
�90
=0
=90
�s cylindrical shell with the following properties.

Geometric properties are a cylinder length of 5 m, radius of the
shell of 0.3 m, and shell-wall thickness of 3 cm. Ply material is
graphite epoxy; E1 � 150 GPa, E2 � 9 GPa, G12 �G13�
7:1 GPa, G23 � 2:5 GPa, �12 � 0:3, and 	� 1600 kg=m3. Inner-
stiffener configuration has a single stiffener placed at the midspan.
Ring stiffeners are made of aluminum 6061-T6 with E1 � 70 GPa
andG� 26 GPa. The boundary condition is a shell clamped at both
ends.

For comparison, modal frequencies for the inner-stiffener config-
uration are calculated for two different stiffener thicknesses (1 and
2 cm) and for a stiffener width of 3 cm. Table 3 compares the
fundamental modal frequencies for the beam mode of vibration
n� 1. Frequency results used in the comparison are taken from
Table 3 of [15] for the inner ring configuration. It should be noted that
for the particular ring-stiffened shell configuration studied by Wang
and Lin [15], modal frequencies of the inner and outer ring-stiffener
configurations were almost equal to each other.

Table 3 shows that the frequencies calculated by both studies are
very close to each other and the frequency trends, with respect to
change in the stiffener thickness, are also similar. In the present study,
fundamental variable transformation and common reference surface

methods both gave almost the same results for the stiffened shell
configuration studied.

Analysis of Ring-Stiffened Shells of Revolution with Variable

Winding Angle and Thickness

Common reference surface method is used to demonstrate the
application of the numerical-integration-based free-vibration anal-
ysis for ring-stiffened filament-wound conical shells of revolution
considering the variation of the winding angle and the thickness
along the meridian of the shell. Figure 12 shows the shell wall of the
variable-thickness conical shell that is assumed to be manufactured
by the filament-winding operation, such that the winding angle and
the thickness vary according to Eqs. (15) and (16), respectively. The
ring stiffener is assumed to be secondarily bonded to the filament-
wound conical shell, and in the present study, a constant-thickness
ring stiffener is considered. It is also assumed that the stiffener is
composed of several composite layerswith constantfiber orientation.
However, in the numerical-integration-based analysis, inclusion of
variable-thickness and variable-stiffness ring stiffeners into the
problem brings about no difficulty, since the ring stiffeners are
modeled as shell segments. Figure 12 shows that the midsurface of
the shell wall is taken as the common reference surface with respect
to which all the fundamental variables of the conical shell and the
ring-stiffener region are defined.

In the present study, a computer code is prepared such that any
number of ring stiffeners with specified widths at any axial location
can be included in the governing equations automatically. A sample
study has been performed for a conical shell with the following
geometric, material properties, and stiffener configurations.

Geometric properties are the slant length SL of the cone of 0.7 m;
cone angle �c of 20


; radius of the reference surface of the conical
shell at the narrow end, where the winding is assumed to start, of
0.2 m; initial shell-wall thickness at the narrow end of 1.92 mm;
constant wall thickness of the ring stiffener (excludes the shell-wall
thickness) of 5.76 mm; and stiffener width of 50 mm.

For ply material properties, the same material are used as for the
shell wall and the ring stiffeners; Young’s modulus in the fiber
direction is E1 � 213:74 GPa; Young’s modulus transverse to fiber
is E2 � 18:62 GPa, shear moduli are G12 �G13 � 5:171 GPa and
G23 � 4:137 GPa; Poisson’s ratio is �12 � 0:28; and mass density is
	� 2051:88 kg=m3.

Shell-wall ply properties are a ply thickness of the conical shell
wall of 0.24 mm at the narrow end, where the winding operation is
assumed to start, and a shell wall without the ring stiffener consists of
eight plies with 35
 fiber orientation at the starting edge of the
winding.

Ring-stiffener ply properties are a fiber orientation angle of each
layer of 20
, and a stacking sequence of the ring stiffener of ��= �
�=�= � �=�= � �=�= � �=�= � �=�= � ��S symmetric with 24
layers with a ply thickness of 0.24 mm. The inner-stiffener config-
uration with one, two, and three stiffeners is placed at axial locations
such that the total shell length is divided into equal length segments in
each case. The boundary conditions are that the shell is clamped at
the narrow end and clamped and free at the wide end.

Figures 13 and 14 give the variation of the scaled nondimensional
fundamental natural frequency with respect to the circumfer-
ential wave number for different numbers of stiffeners and for the

Table 2 Comparison of the scaled nondimensional

frequencies W

Inner stiffener Outer stiffener

n Ref. surface Variable trans. Ref. surface Variable trans.

0 0.4746 0.4744 0.4757 0.4753
1 0.3583 0.3581 0.3587 0.3585
2 0.1626 0.1628 0.1575 0.1576
3 0.1687 0.1697 0.1541 0.1543
4 0.2406 0.2413 0.2252 0.2254
5 0.3297 0.3303 0.3163 0.3166
6 0.4310 0.4317 0.4209 0.4214
7 0.5394 0.5399 0.5331 0.5336

Table 3 Modal frequencies (rad=s) of
inner-stiffener configuration

Stiffener thickness Present study [15]

1 cm 720.6 723.4
2 cm 717.9 721.0

Fig. 12 Variable-thickness filament-wound conical shell with ring

stiffener.
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no-stiffener case. In Figs. 13 and 14, S0 denotes the shell without any
stiffener and, similarly, S1, S2 and S3 denote shells with one, two,
and three ring stiffeners, respectively. The natural frequencies plotted
in Figs. 13 and 14 correspond to the nonaxisymmetric lateral-
displacement modes of the truncated conical shell.

The common behavior that is observed for both edge conditions is
that the effect of increasing the number of ring stiffeners along the
shell axis is felt more at higher circumferential vibrationmodes. This
behavior is again attributed to the dominance of bending strain
energy at high circumferential wave numbers. At high circum-
ferential vibration modes, circumferential slices of the shell of
revolution behave as beams under circumferential bending and the

natural frequencies increase when the number of ring stiffeners is
increased. However, at low circumferential wave numbers, exten-
sional strain energy is more dominant in its contribution to the total
strain energy, and it is deemed that due to the additionalmass effect of
the stiffeners, natural frequency decreases when the number of ring
stiffeners is increased. It is also noted that when the circumferential
wave number is increased further, the natural frequencies of shells
with different numbers of stiffeners and with no stiffener gradually
merge together. This behavior is more clearly seen for the clamped–
free edge condition in the circumferential wave number range
analyzed. Physically, a high circumferential wave number means
many nodal points around the circumference. Therefore, beyond a
certain number of nodal points around the circumference, the effect
of the number of stiffeners on the frequencies is felt less and fre-
quencies start to merge together. Another observation from Figs. 13
and 14 is that for conical shells with ring stiffeners, there is a local
peak in the natural frequencies at an intermediate circum-
ferential wave number, and such a local peak does not exist for the
shell with no ring stiffener. It is observed that the local peak shifts
toward higher circumferential wave numbers as the number of ring
stiffeners is increased for both edge conditions.

For both edge conditions, Figs. 15 and 16 show the cosine part of
the Fourier transform of the fundamental mode shape of the conical
shell corresponding to the lateral displacement w0 for n� 3. Since
the sine part of the lateral displacement turned out to be very small
compared with the cosine part, the sine part is not shown; therefore,
the cosine part depicts almost the actual variation of the lateral
displacement. Figures 15 and 16 show the mode shapes for the no-
stiffener and the single inner-stiffener configuration at themidspan of
the conical shell.The mode shapes shown in Figs. 15 and 16 are
obtained such that the variation of the winding angle and the
thickness of the main shell wall according to Eqs. (15) and (16) are
included in the analysis. For this particular stiffener configuration, it
is observed that the ring stiffener primarily affects the mode shape
around the regionwhere it is attached. It is also observed fromFig. 16
that for the conical shell that is clamped at both edges, the peak
displacement point shifts toward the large-radius end for the no-
stiffener case. This shift can be attributed to the cone geometry and
also to the decrease of the stiffness coefficients and thickness along
the axis of the filament-wound conical shell when the winding starts
from the small radius end. It should be expected that at higher
circumferential vibration modes, the peak displacement point would
move toward the large-radius edge evenmore. This is because at high
circumferential wave numbers, circumferential slices of the shell
essentially behave like a beam under circumferential bending, and a
slice taken from a section close to the larger end of the cone resembles
a longer span beam compared with a slice taken from a section close
to the smaller end. The attachment of a ring stiffener at themidspan of
the conical shell is seen to slightly shift the peak displacement point
toward the midspan.

Figure 17 shows the effect of thevariation ofwinding angle and the
thickness on the natural frequencies of the conical shell. In Fig. 17VS

Fig. 13 Fundamental frequency versus circumferential wave number:

clamped–free.

Fig. 14 Fundamental frequency versus circumferential wave number:

clamped–clamped.

Fig. 15 Fundamental lateral-displacement mode shape (n� 3), clamped–free: a) no stiffener and b) single stiffener at midspan.
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stands for the variable-stiffness case, in which the winding angle and
the thickness continuously vary along the meridian of the shell, and
CS stands for the constant-stiffness case, in which the initial winding
angle and thickness at the starting edge of the winding operation are
assumed to be constant throughout the shell. The results are obtained
for a single-stiffener case at the midspan.

At lower circumferential wave numbers, natural frequencies of the
variable-stiffness case are higher compared with the frequencies of
the constant-stiffness case. This behavior is attributed to the com-
bined effect of the variable-stiffness and variable inertia of the con-
ical shell with varying winding angle and thickness. The stiffness
coefficients and the thickness of the variable-stiffness case decrease
along the meridian of the conical shell, and for this particular
symmetric shell-wall layup, the bending-stretching coupling coeffi-
cients vanish for both cases. However, some of the other coupling
stiffness coefficients with subscripts 16 and 26 in Eq. (3) and
subscript 45 in Eq. (4) do not vanish for the particular shell-wall
layup, and for the constant-stiffness case, the nonzero coupling
stiffness coefficients are higher over the span of the shell compared
with the coupling stiffness coefficients of the variable-stiffness case.
The lower natural frequency of the constant-stiffness case can be
attributed to the higher inertia due to the assumption of constant
thickness and also to the flexibility of the shell due to the existence of
higher coupling stiffness coefficients compared with the variable-
stiffness case. It should be noted that at low circumferential wave
numbers, the bending strain-energy contribution to the total strain
energy is lower [26] and therefore the effect of bending stiffness
coefficients on the natural frequencies is less. However, at high
circumferential wave numbers, it is observed that the natural fre-
quencies of the constant-stiffness case are considerably higher than
the frequencies of the variable-stiffness case. The differences in the
frequencies increase at higher circumferential vibration modes. This
behavior is attributed to the dominance of the bending strain-energy
contribution to the total strain energy at high circumferential wave
numbers [26]. At high circumferential wave numbers, circum-
ferential slices of the shell essentially behave like a beam under

circumferential bending. Therefore, the bending stiffness coefficient
in the circumferential direction (D22) predominantly governs the
magnitude of the natural frequency, and the constant-stiffness case
has a higher bending stiffness coefficient in the circumferential
direction compared with the variable-stiffness case. For the constant
winding angle and thickness assumption, circumferential bending
stiffness at the starting edge of the winding at the smaller end of the
cone is taken as constant along the axis of the shell. However, Fig. 7
shows that for the variable-stiffness case, the circumferential bending
stiffness coefficient drops toward the larger end of the cone.

Conclusions

A methodology based on the numerical integration technique is
presented for the free-vibration analysis of shear deformable
filament-wound branched shells of revolution with ring stiffeners
considering the variation of the winding angle and thickness along
the meridian of the branched shell of revolution. For the filament-
wound shells of revolution, filaments are assumed to be placed along
the geodesic fiber path on the shell of revolution, resulting in the
variation of the stiffness coefficients only along the meridian of the
shell of revolution with general meridional curvature. Extension of
the multisegment numerical integration technique to the free-
vibration analysis of branched anisotropic shells of revolution is
demonstrated. The applicability of the method of solution is further
extended to the ring-stiffened filament-wound shells of revolution
and two alternative methods of analysis are presented.

It has been shown that either by the fundamental variable-
transformation method or by the common reference surface method,
free-vibration analysis of shells of revolution with ring stiffeners,
which are placed asymmetrically with respect to the middle surface
of the shell, can be performed by the numerical-integration-based
solutionmethod. For the ring-stiffened shells of revolution, the use of
a common reference surface for the main shell wall and the stiffener
region is advantageous, because the transformation of the fundamen-
tal shell variables at the shell-stiffener junction can be eliminated.
However, for shells of revolution with branches, the transformation
of the fundamental variables has to be carried out at the junctions
because of the change of the reference surface at the junctions.

It has also been shown that the effect of number of ring stiffeners
on the fundamental natural frequencies is closely linked to the
particular circumferential vibration mode. At low circumferential
vibration modes, the natural frequencies of shells of revolution,
reinforced by the ring stiffeners, are actually lower than the natural
frequencies of shell of revolution that are not ring-stiffened.

The significant effect of the variation of the winding angle and the
thickness offilament-wound ring-stiffened shells of revolution on the
fundamental natural frequencies corresponding to different circum-
ferential vibration modes has also been demonstrated for a truncated
conical shell of revolution.

It is deemed that the numerical-integration-based methodology
provides an alternative and powerful solution technique to analyze
anisotropic shells of revolution with meridionally varying geometric

Fig. 16 Fundamental lateral-displacement mode shape (n� 3), clamped–clamped: a) no stiffener and b) single stiffener at midspan.

Fig. 17 Natural frequency versus circumferential wave number: single

stiffener at midspan.
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and material properties. The inclusion of discretely or continuously
varying geometric and material properties along the meridian of the
shell of revolution brings about no extra difficulty in the solution
process.

Appendix: Transformation Matrix TR

The nonzero components of the transformation matrix TR are

TR�1; 1� � TR�2; 2� � TR�3; 3� � TR�4; 4�
� TR�9; 9� � TR�10; 10� � cos�

TR�5; 5� � TR�6; 6� � TR�7; 7� � TR�8; 8� � 1;

TR�1; 3� � TR�2; 4� � � sin�;

TR�3; 1� � TR�4; 2� � sin�
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